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Abstract 

It is shown that at large distances from a rotating mass, the radiation may be associated 
with an Einstein-Maxwell null field with a non-zero null current. 

1. Introduction 

It is known that  the Schwarzschild metric may  be put  in the form 

ds2 = ( 1 -  ~ ) d u 2  + 2dudr-r2(dO2+sinZOd(~2)  

in the co-ordinates x~' = (u, r, 0, q~), t* = 0, 1, 2, 3. Vaidya's radiating metric 
(1953) is obtained by making m an arbitrary function of  the co-ordinate u. 
The resulting gravitational field equations are then 

2m'l~l~ (1.1) R~ = -~- 

where m' = [dm(u)/du] and l~ is the null vector (1,0, 0, 0). 
Murenbeeld & Trollope (1970) have suggested a corresponding generalis- 

at ion of  the Kerr  metric, represented by the metric tensor, 

2mr 
1 - - -  1 0 p2 

go~fl = 

1 0 0 

0 0 _p2 

- 2 a r  sin 2 0 - a s i n  2 0 0 
_ P  

2 m a  
- -  r sin 2 0 

p2 

- a  sin 20 

0 

- s i n  2 0 [ ~ 2 2 r s i n 2 0 + r 2 +  a 2" 

(1.2) 
where p2 = r 2 + a 2 cos 2 0. 
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With m a function of u and a a constant, they obtain the gravitational 
field equations in the form 

R ~  = qw~ wg + w~ a~ + w~ a~, (1.3) 

where w~ is a null vector and w~a ~ = 0, and discuss the case (a/m) z < 1 for 
which (1.3) is approximately of the form (1.1). 

The object of this paper is to provide an interpretation of the energy flux 
in the case considered by Murenbeeld and Trollope in terms of  electro- 
magnetic radiation. It is found that in the approximation considered by 
Murenbeeld and Trollope, the space-time defined by (1.2) admits an electro- 
magnetic field with non-zero current density. The field differs from that 
associated with the Vaidya metric (Goodinson and Newing, 1971) in that 
the total rate of energy emission is constant and an extra term arises in the 
current density vector dU. 

The general c a s e  (a/m)2,~ 1 is first considered, for which the non-zero 
components of the Ricci tensor obtained by Murenbeeld and Trollope are, 

Roo = 2m' r2(r 2 + a2)/p 6 + (m" ra 2 sin 20)/p 4 ) 

R03 = R30 = - .  sin 2 0[Roo + rn"(r z - a 2 cos 20)/p 4] | 
/ 

R33 = a z sin 40[Roo + 2m"(r 2 - a z cos 2 0)/p 4] ~ (1.4) / 

Ro2 = R20 = (2m ra z sin 0 c o s  O)/p 4 [ 

R32 = R23 = - a  sin 2 0. R02 J 
/ 

It may be noted that since co-ordinate singularities are to be avoided, the 
restriction r > 2m must hold and it is found more convenient in later 
sections to work with the approximation (a/r) 2 -< 1 rather than (a/m) 2 ~ 1. 

2. The Rainich Conditions 

With reference to Goodinson and Newing (1968) the conditions for an 
Einstein-Maxwell field include the requirements that 

(i) R~, ~ = 0 (2.1) 

(ii) R~g V ~ V/3 < 0 where V ~' is any time-like vector (2.2) 

(iii) R ~  R ~ = A 2 3~/3 (2.3) 

It is found at once that (2.1), (2.3) are not satisfied with (1.4) values of R~I3 
and so the Kerr-Vaidya field cannot be interpreted as arising purely from 
an electromagnetic field. 

Consider now condition (2.2). With reference to Goodinson and Newing 
(1969) a tetrad of null vectors l~, m~, r~ ,  n~, can be constructed to describe 
the space-time, and any arbitrary vector will have an expansion in terms of 
these tetrad vectors. 

Writing 
V ~ = U + dn ~ + bm ~ + [~rfi*' 
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where d is real, then if V ~' is time-like, d > bb. Computing R ~  V ~ Vg using 
(1.4) gives 

R~VeV#=dZ{~6r2 ( rZ+a2)  q m"ra2sinZO}p4 

2m' a sin 0 . 0 q ~ s  . d{btacos - ir) + b(acos 0 + it)} 

which must be <0 in order to ensure a positive energy density. For con- 
venience put b = boca, d =  bo2r/ where ~7 is subject to ~ > 1. Then for 
positive energy density, 

(2m" r 2 m" ra 2 sin 2 0} 
bo ~7 I - 7  (rz + a2) + 0 4 

! 

4m' a sin 0.  0 cos/3 + r sin/3) < 0 + ~ tacos 

for all/3 and ~/. 
Re-writing the above as 

where 

bo~lX+ Ysin(o~ + ]3) < 0 (2.4) 

X =  2m'r2(r2 + a2) q- m"ra2 sin2 0 _- Ro0 
p6 e 4 

' " a COS 0 y 4 m a s l n 0  t a n ~ = - -  
a / ( 2 )  p 3 ' r 

it is obvious that Xmust  be negative since we can take/3 = -~.  On the other 
hand/3 may be chosen to make am' sin 0 sin (~ +/3) positive and since b0 can 
be made arbitrarily small, (2.4) can be satisfied only if am' = 0, i.e. either 
m ' =  0 (non-radiating metric) or a = 0 (non-rotating metric). However if 
air is sufficiently small, Y is approximately zero and the condition X < 0 
ensures that R~4V ~' V ~ < 0 at sufficiently large distances. Therefore 
R~/~ V ~ V~ is not necessarily less than zero near the source and so would not 
necessarily imply positive energy density there. 

3. The Tetrad and Electromagnetic Tensor 

The approximation (air) z ~ 1 is now considered. In this case the two 
Rainich conditions for a null field (Goodinson and Newing, 1969) are 
satisfied, R~ ~' = 0 and Ru~,R ~ = 0. Before an electromagnetic field is fitted 
to this degree of  approximation the tetrad of null vectors will be constructed. 

In the stated approximation, p2 = r 2, g.= de tg~  = -r4sin 2 0. l~ is taken 
to be the null vector (1,O,O,(-3a/2)sinZO) which is Murenbeeld and 
Trollope's vector v~. The components of the contravariant vector 1 ~ are 
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then approximately (O,l ,O,a/2r2),  and l ~ l " = O  to the approximation 
considered. The vectors my and m v are then 

m .  = O, ~ , ir, - r  sin 0 

mU = 1 /3asinO ( k - 3 ) a s i n 0  i 1 ] 
a / 2 \  2r ' 2r ' r ' r s i n 0  l 

where k = 2m/r.  
The self-dual electromagnetic tensor o5 ~' (Goodinson and Newing, 

1969) given by oSu~ = A(lt, m ~, - U m  ~) has the form 

A { 3asin ~0/t61 ..}_~l/Z[~,0 _ i ~ Z ~ + S ~ 3 3 , ,  ) c h ~ ' " = r v ' 2  2 O_ _ ~ _ / 3 a s i n O  ~, 1 

a 
+ s ~ ] ) "  (3.1) 

A second electromagnetic tensor oJ ~ can now be introduced by means of a 
complexion parameter X (Goodinson & Newing, 1968) in the form oJ "~ = 
e~Xd~ ~ and the Ricci tensor is then expressed as R ~  =-oJ~0~~ The 
gravitational field equations require that )t = a / ( - 2 m ' ) / r .  

4. The  M a x w e l l  F ieM Equat ions  

The Maxwell field equations (Goodinson & Newing, 1968) are 

1 

where J~ is real (or zero). 
When a = 0 the Vaidya solution is produced: 

K c o t A  
J~' r ~  . 31~ (K=  ~/-m')  

where 
A = sin-l{sin 0 sin r 

Consider now the case when a # 0. Since J"  must be real, the vanishing of 
the imaginary parts o f J  3 and j1 give 

cos X sin 0 = f (u )  

Ksin X = F(O) 

wherefand  F are arbitrary functions of u and 0 respectively, subject to 
F z f2  

t - - -  1. K z sin z 0 

The vanishing of the imaginary part of j0 leads to X,1 = 0 which implies 
that the real part of j0 is also zero. If  X is taken to be independent of the 
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x3-co-ordinate  then the real pa r t  o f J  2 can be taken  to be zero. Thus  X is a 
funct ion o f  x ~ and  x z only.  

In t roduc ing  new funct ions G(u) and  H(O) by the equat ions  

then 

K s i n  x sin 0 = H(O)] 
= C(u) 

K c o s x  s i n 0 J  
(4.1) 

G 2 + H 2 --  _K 2 sin 2 0. (4.2) 

Suppose  u = ul, u = u2 are  two solut ions o f  (4.2) with respect  to the same 
value o f  0, then 

H 2 + Gl 2 = Kl  2sin 2 0 

H + G2 2 ~ K2 2 sin 2 0 

where Gl -- G(ux) etc. Thus  

GI 2 --  G22 = (KI 2 --  K22) sin 2 0. 

Since u is being var ied  independent ly  o f  0, i t  can be concluded that  
G~ 2 - G22 = 0 and  K12 = K22 i.e., G and  K a t e  constants .  

Similarly,  vary ing  0 independent ly  o f  u leads to 

H i  2 --  H22 = K 2 (sin 2 01 - sin 2 02) 

which being true for  all u implies  tha t  K = constant ,  and  so H = Ks in  0. 
W i t h  regard  to  (4.1), X can now be taken  to be ~r/2 with G = 0 and  

H = K s i n 0  where K =  constant ,  i.e., m '  = constant .  
The expression for  j v  can now be wri t ten as 

d~ KcotO ( a )  
r2 ~1/~ + ~firz ~3 ~ �9 (4.3) 

Equa t ion  (4.3) shows clearly the presence o f  the extra  te rm aKcotO/2r 4 in 
the x 3 = C-direct ion which could  be in terpre ted  as a non- rad ia l  componen t  
o f  cur rent  a long the surface o f  a cone. 
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